TMI Update: Jan 14, 2024


Did you catch "The Meltdown: Three Mile Island" on Netflix?
TMI remains a danger and TMIA is working hard to ensure the safety of our communities and the surrounding areas.
Learn more on this site and support our efforts. Join TMIA. To contact the TMIA office, call 717-233-7897.

    


Coalition urges Senate to oppose renomination of NRC commissioner Baran

Fri, Jun 23, 2023, 1:00PM Nuclear News

Baran (Photo: NRC)

A coalition of environmental organizations supporting regulatory and legislative change to accelerate the licensing and deployment of new advanced nuclear reactors in the United States spoke out on June 20 against the renomination of Jeff Baran to serve another five-year term on the Nuclear Regulatory Commission. The groups—Build Nuclear Now, the Breakthrough Institute, Generation Atomic, Nuclear New York, and Green Nuclear Deal—pointed to Baran’s pattern of actions that the groups say contradict his claimed support for bipartisan solutions to modernize the country’s nuclear energy infrastructure.

The groups noted that despite those repeated claims before the Senate Environment and Public Works Committee conducted as part of his 2018 and 2023 confirmations to the NRC, Baran’s record shows his vote consistently being the sole vote against reasonable steps to improve the efficiency of the NRC’s regulations, hindering the deployment of new nuclear.

The Senate is set to consider the forthcoming vacancy at the NRC following the June 14 placement of Baran’s nomination on the Senate executive calendar.

Arguments: The opposing groups list seven items that argue against Baran’s reappointment:

1. Baran was the sole vote against updating the NRC’s guidance for siting smaller and safer advanced nuclear reactors that would allow advanced reactors to replace shut-down fossil fuel power plants more easily.

2. Baran was the sole vote against an NRC staff proposal to align emergency preparedness requirements with the reduced risk associated with advanced reactors.

3. Baran was the sole vote against developing a common-sense environmental review document for advanced reactors.

4. Baran opposed streamlining environmental regulations. He wrote, “I do not support guidance changes aimed at reducing the length and detail of National Environmental Policy Act environmental reviews. The agency has often struggled with including sufficient detail in these important reviews. Efforts to ‘streamline’ environmental impact statements would be counterproductive and could have significant adverse unintended consequence.”

5. Baran supported planning for extremely unlikely hypothetical accidents.

6. Baran supported basing the new 10 CFR Part 53 on the current 10 CFR Parts 50 and 52, even though the new framework was supposed to be innovative.

7. Baran supported unnecessarily increasing regulations on the current fleet of reactors.

Quote: “We need good-faith commissioners on the NRC who are going to act in the interest of the American people,” said Ted Nordhaus, founder and executive director of the Breakthrough Institute. “The status quo is denying the American people access to clean, affordable energy, and the NRC needs to be led by commissioners who recognize the evolution of nuclear energy technologies and the need for change. Rather than confirm Commissioner Baran, we strongly support considering an alternative candidate with the necessary vision, qualities, and character to lead the NRC into the future and address the imminent challenges faced by our country and the world.”

At 3 million pounds, the first foundation for New Jersey wind is complete but its maker sees trouble ahead 

Paulsboro plant assembles wind turbines headed for Jersey Shore.

by Frank Kummer
Updated 

    The first foundation ever assembled for a wind turbine in the U.S. resembles a big yellow rocket as it rests horizontally at the Paulsboro Marine Terminal on the Delaware River in Gloucester County.

    The three million-pound, 300-foot-long, all-steel foundation, known as a monopile, is composed of three four-inch-thick tubes welded together. The top section is tapered and coated with protective epoxy paint.

    The monopile will eventually be rammed 100 feet into the ocean floor about 15 miles out to sea southeast of Atlantic City. Then a tower with turbine and blades will be bolted to its flanges, rising 906 feet from the ocean at its highest blade tip, putting it in the ballpark of the highest skyscrapers in Philadelphia.

    There will be 98 of these turbines in the first installment of offshore wind in New Jersey. The project, known as Ocean Wind I, is owned by global wind developer Orsted and has the capacity to produce 1,100 megawatts of electricity, enough energy to power 500,000 homes annually. It is expected to begin producing power by late 2024 or early 2025.

     

    But Lee Laurendeau, CEO of EEW American Offshore Structures, the company working with Orsted to make the monopiles, is losing sleep over the project. He foresees a precarious situation for New Jersey’s attempt to become a leader in manufacturing and supply chain for offshore wind manufacturing and capture thousands of jobs that go with it.

    At issue is a wrinkle in how New Jersey handles new federal tax credits that Laurendeau and wind proponents say could allow New York and other states to grab a big chunk of offshore wind manufacturing — something New Jersey hopes to dominate.

    In New Jersey, offshore wind developers can’t take advantage of a big federal tax credit. But the developers say they need that freed-up capital to construct buildings, take loans, and hire more people as planned to make parts.

    Laurendeau said New Jersey’s tax-credit issue threatens EEW’s $300 million expansion, planned to provide monopiles for multiple offshore wind installments approved by the state’s Board of Public Utilities. EEW says his company needs the tax credits to make the expansion financially workable.

     

    “Offshore wind has $100 billion of announced projects,” Laurendeau said. “And we have to ask, ‘Do we want $100 billion of those parts coming from across the ocean, or do we want to build them here?’”

    A completed monopile foundation at EEW AOS where the massive monopile foundations for the offshore wind turbines are manufactured, in Paulsboro, NJ, Friday, June 16, 2023.

    A completed monopile foundation at EEW AOS where the massive monopile foundations for the offshore wind turbines are manufactured, in Paulsboro, NJ, Friday, June 16, 2023.Jessica Griffin / Staff Photographer


    A tax-credit snarl

    The credits were created under the Inflation Reduction Act of 2022, which allows for a tax credit up to 30% for offshore wind projects that begin construction before Jan. 1, 2026. Credits were also created under the 2020 Stimulus Act.

    But a New Jersey law, passed before those acts, states that any such credits must be returned to ratepayers and not used by offshore wind developers. No other state has that requirement. Offshore wind manufacturers say they need the credits because material, labor and borrowing costs skyrocketed dramatically following the pandemic.

     

    Laurendeau wants legislators to come up with a solution fast that allows offshore wind companies can apply for the credits, as they fear missing key benchmarks related to wind projects. Meanwhile, New York is luring supply chain and port infrastructure businesses, including a $350 million offshore wind turbine tower manufacturing facility. General Electric plans to build turbine blades and nacelles, which house gears and drivetrains, in that state.

    New Jersey, Laurendeau said, is set to become a manufacturing hub.

    “But if you blink,” he warned, “you’re going to lose it.”

    On Tuesday, Democratic state Reps. Louis Greenwald and Paul Moriartyintroduced a bill that would “allow qualified offshore wind projects to elect to retain the benefit of the federal tax credits.” The bill states that the federal tax benefits “were established in order to bolster and support the offshore wind industry in response to the COVID-19 pandemic and the unique macroeconomic challenges.” It has been referred to the Assembly budget committee. Democrats control both the Assembly and Senate.

    Welders work on a monopile foundation at EEW AOS in Paulsboro, Gloucester County. The monopiles are one piece of the offshore wind turbines slated to be erected in New Jersey.

    Welders work on a monopile foundation at EEW AOS in Paulsboro, Gloucester County. The monopiles are one piece of the offshore wind turbines slated to be erected in New Jersey. Jessica Griffin / Staff Photographer


    Fading appetite for subsidies

    Under Democratic Gov. Phil Murphy, New Jersey has invested $250 million in EEW’s state-of-the-art manufacturing facility, as well as $637 million to build the New Jersey Wind Port in Salem County where turbines can be assembled and shipped. The state also hopes for some parts manufacturing at the site. Overall, New Jersey has committed about $1 billion for offshore wind in subsides and credits, according to the Office of Legislative Services.

    But it appears there is little appetite for more, especially among the state’s GOP. Both legislators and the New Jersey Board of Public Utilities are under pressure to ensure that offshore wind doesn’t dramatically increase energy rates for consumers as detractors fear.

     

    “I’m going to have a difficult time supporting any type of future subsidies,” Sen. Paul Sarlo (D., Bergen), chairman of the state Senate Budget and Appropriations Committee, said during a May 23 hearing. “These are large players, international players, who knew what they were getting into when they built these facilities.”

    Further, wind opponents have latched onto whale deaths this year as a way to rally people to their cause. Despite experts’ insistence that there is no link between the dead whales and the turbines, some groups have suggested that surveying of the ocean floor for turbines and transmission lines could be impacting whales.

    » READ MORE: N.J. whale deaths have sparked right-wing conspiracy theories on Facebook

    Dawson Tilghman, a laborer with EEW AOS, works with a grinder as part of the manufacturing of massive monopile foundations for offshore wind turbines in New Jersey.

    Dawson Tilghman, a laborer with EEW AOS, works with a grinder as part of the manufacturing of massive monopile foundations for offshore wind turbines in New Jersey.Jessica Griffin / Staff Photographer


    Offshore wind and jobs

    Laurendeau said offshore wind has a multiplier effect on the economy. EEW has contracts with 250 New Jersey-based suppliers for everything from office chairs to equipment. He said that hiring would ramp up in coming years.

    “You’re talking suppliers and subcontractors, and all the work here is being done by union contractors,” Laurendeau said. “So it’s probably 1,000 jobs here.” He estimates that the projects would support “probably 4,000 jobs” in New Jersey.

     

    Wind proponents estimate that tens of thousands of jobs could be linked to offshore wind in coming years if the state dominates manufacturing.

    Former state Sen. Stephen Sweeney, vice president of the Iron Workers union, wrote the law a decade ago that allowed offshore wind projects to proceed. He said he is concerned that New Jersey’s competitive advantage is close to crumbling.

    The Sweeney Center for Public Policy at Rowan University outlined the issue in a recent paper. The center is named after the former senator, who was New Jersey’s longest running Senate president until he lost reelection in 2021. He is chair of the policy center’s advisory board.

    “New Jersey has made a big investment,” Sweeney said. “But the manufacturing projects won’t survive. They won’t be able to get them financed. If we don’t move quickly, all these manufacturing jobs are in jeopardy.”

    Offshore wind isn’t going away, despite the wishes of opponents, Sweeney said. The federal leases are set, and the U.S. Bureau of Ocean Energy Management has approved a final environmental impactstatement for Ocean Wind I — a major hurdle.

    But Sweeney said what stands to be lost is the state’s hope to become a manufacturing hub not only for monopiles, but other components.

    EEW American Offshore Structures’ situation is an example, Sweeney said. So far, the company has been importing the big sections for the monopiles from its German parent company and assembling and painting them in Paulsboro. The next phase is to make them from scratch entirely in New Jersey.

    Sha Reed is helping oversee one of the new buildings, a $300 million project for EEW AOS, which is manufacturing the massive monopile foundations for the offshore wind turbines.

    Sha Reed is helping oversee one of the new buildings, a $300 million project for EEW AOS, which is manufacturing the massive monopile foundations for the offshore wind turbines.Jessica Griffin / Staff Photographer


    Falling behind

    EEW has 100 employees in Paulsboro but is a year behind on its second phase of construction, which calls for four new buildings to house plate-cutting and rolling mills and adding 437 permanent workers capable of producing 100 monopiles a year.

    That would require buying hundreds of tons of American steel and hiring local employees such as Sha Reed. Reed, who just graduated in May from Rowan University with a degree in construction management, was working in a tile store in the winter when Laurendeau stopped in looking for material for a home project. The two hit it off and Laurendeau eventually hired Reed, who is now helping oversee one of the new buildings, a $300 million project. Reed still finds it hard to believe his luck.

    “When an opportunity comes up, you just got to take it,” Reed said, “especially to be part of something so unique and dynamic, right?”

    Others in the industry, including Terrence Kelly, a spokesman for Atlantic Shores, also say the need to act is urgent. Atlantic Shores, a joint venture between Shell New Energies and EDF-RE Offshore Development, has an order for 103 monopiles in another wind project approved by the state. The 1,500-megawatt wind farm off Atlantic City would power 700,000 homes. Atlantic Shores is depending on EEW’s Paulsboro expansion, Kelly said.

    Both Orsted and Atlantic Shores have another wind farm each approved by New Jersey’s BPU.

    “The impact is pretty significant,” Kelly said. “Part of our commitment … was $848 million guaranteed spending in New Jersey. The cascading consequences will require us to either look elsewhere or figure out a novel solution that hasn’t revealed itself yet.”

    Published 

    Nuclear Regulatory Commission - News Release
    No: II-23-020 June 15, 2023
    Contact: Dave Gasperson, 404-997-4417
     
    NRC Schedules Predecisional Enforcement Conference with BWXT
     
    The Nuclear Regulatory Commission staff will hold a predecisional enforcement conference with officials from BWXT Nuclear Operations Group Inc. on June 21 to discuss two preliminary violations of regulatory requirements that occurred at the Lynchburg, Virginia, fuel fabrication facility in January 2023.
     
    The conference starts at 10 a.m. Eastern time in Suite 800 at the NRC’s Region II Office, Marquis One Tower, 245 Peachtree Center Avenue, NE, in Atlanta. The NRC staff will be available to answer questions from the public after the formal portion of the meeting.
     
    Members of the public can also listen to the meeting by dialing 301-576-2978 and entering the conference number 753930684#.
     
    The preliminary violations of NRC requirements were discovered after a January 19 event when a storage tank at BWXT's Uranium Recovery Facility overflowed, spilling uranium solution onto the floor and into a ventilation system. Two safety controls designed to prevent this failed, increasing the risk of an accidental criticality.
     
    BWXT took immediate corrective actions in the affected area. The event did not endanger the plant workers, the public, or the environment.
     
    A subsequent inspection revealed an apparent breakdown of safety controls designed to prevent an accidental criticality at BWXT's facility. The NRC's inspection findings related to that event are described in a May 5 inspection report.
     
    During the conference, BWXT will have the opportunity to provide its perspective or additional information about the apparent violations. The NRC will review the information provided during the meeting and finalize its enforcement decision in a publicly available document.
     
    The dangerous business of dismantling America’s aging nuclear plants
     
    Accidents at New Jersey’s Oyster Creek power plant have spurred calls for stricter oversight of the burgeoning nuclear decommissioning industry

     By  May 13, 2022 at 6:55 a.m. EDT

    All three incidents occurred on the watch of Holtec International, a nuclear equipment manufacturer based in Jupiter, Fla. Though the company until recently had little experience shutting down nuclear plants, Holtec has emerged as a leader in nuclear cleanup, a burgeoning field riding an expected wave of closures as licenses expire for the nation’s aging nuclear fleet.

    Over the past three years, Holtec has purchased three plants in three states and expects to finalize a fourth this summer. The company is seeking to profitably dismantle them by replacing hundreds of veteran plant workers with smaller, less-costly crews of contractors and eliminating emergency planning measures, documents and interviews show. While no one has been seriously injured at Oyster Creek, the missteps are spurring calls for stronger government oversight of the entire cleanup industry.

    Workers walk past the site of a building demolition at Oyster Creek Nuclear Generating Station in New Jersey. Regulators have documented at least nine violations of federal rules at the plant under Holtec’s ownership. (Sarah L. Voisin/The Washington Post)


    In the nearly three years Holtec has owned Oyster Creek, regulators have documented at least nine violations of federal rules, including the contaminated water mishap, falsified weapons inspection reports and other unspecified security lapses. That’s at least as many as were found over the preceding 10 years at the plant, when it was owned by Exelon, one of the nation’s largest utility companies, according to The Post’s review of regulatory records.

    Joseph Delmar, a spokesman for Holtec, defended the company’s record, saying it takes safety and security seriously. The recent incidents “are not reflective of the organization’s culture,” he said, adding that the worker who knocked down the power line “did not follow the proper safety protocols.” Delmar said the company has decades of experience building equipment to store nuclear waste and employs veteran plant workers to dismantle reactor sites.

    “While the decommissioning organization may seem new, the professionals staffing the company are experienced nuclear professionals with intimate knowledge of the plants they work at,” Delmar said in an emailed statement.

    Analysis: Who's afraid of nuclear power?

    Holtec is, however, pioneering an experimental new business model. During the lifetime of America’s 133 nuclear reactors, ratepayers paid small fees on their monthly energy bills to fill decommissioning trust funds, intended to cover the eventual cost of deconstructing the plants. Trust funds for the country’s 94 operating and 14 nonoperating nuclear reactors now total about $86 billion, according to Callan, a San Francisco-based investment consulting firm.

    After a reactor is dismantled and its site cleared, some of these trust funds must return any money left over to ratepayers. But others permit cleanup companies to keep any surplus as profit — creating incentives to cut costs at sites that house some of the most dangerous materials on the planet.

    Even after reactors are shut down, long metal rods containing radioactive pellets — known as spent fuel — are stored steps away, in cooling pools and steel-and-concrete casks. Nuclear safety experts say that an industrial accident or a terrorist attack at any of these sites could result in a radiological release with severe impacts to workers and nearby residents, as well as to the environment.

    Holtec International opened the 50-acre Krishna P. Singh Technology Campus in Camden, N.J., in 2017. (Sarah L. Voisin/The Washington Post)


    The Nuclear Regulatory Commission, the independent federal agency tasked with overseeing safety at nuclear sites, conducts regular inspections during the decommissioning process. But state and local officials say the NRC has failed to safeguard the public from risks at shut-down plants, deferring too readily to companies like Holtec.

    “The NRC is not doing their job,” said Sen. Edward J. Markey (D-Mass.), who has pushed the agency to adopt stricter regulations around plant decommissioning. “We need a guaranteed system that prioritizes communities and safety, and we don’t have that right now.”

    The NRC’s leadership is divided over the role regulators should play. The agency was created in 1974, as the first generation of commercial reactors was going online, and its rules were mainly designed to safeguard the operation of active plants and nuclear-material sites. As reactors shut down, the NRC began reducing inspections and exempting plants from safety and security rules.

    Last November, the NRC approved a new rule that would automatically qualify shut-down plants for looser safety and security restrictions. Christopher T. Hanson, a Democrat nominated by President Donald Trump and promoted to the role of chairman by President Biden, has said the changes would improve the “effectiveness and efficiency” of the decommissioning process.

    What Should America Do With Its Nuclear Waste?

    Commissioner Jeff Baran, also a Democrat, voted against the proposed rule and called for the NRC and local governments to play a bigger role. “Radiological risks remain at shutdown nuclear plants that must be taken seriously,” he cautioned in public comments. Baran added that the agency already takes a “laissez-faire” approach to decommissioning and that the new rule “would make the situation even worse, further skewing the regulation towards the interests of industry.”

    Dan Dorman, the NRC’s executive director for operations, said in an email that the agency lifts restrictions at plants only if it determines the plant will continue to be safe. In addition to citing Holtec for violations at Oyster Creek, the agency has required the company to take corrective measures, including external security assessments of all its nuclear sites.

    “Our increased oversight and the recent enforcement actions demonstrate our concern about the situation at Oyster Creek,” Dorman said.

    The emissions stack at Oyster Creek, which was permanently shut down in 2018. The plant’s single reactor generated enough electricity to power 600,000 homes. (Sarah L. Voisin/The Washington Post)


    Holtec faces mounting criticism beyond Oyster Creek. Michigan officials have said they worry Holtec will leave residents on the hook for cleanup costs at the Palisades plant on the shores of Lake Michigan. Massachusetts officials have protested Holtec’s plan to take 1 million gallons of contaminated water from the defunct Pilgrim power plant and dump it into Cape Cod Bay.

    While Holtec acknowledges a funding shortfall at Palisades, Delmar says the fund will appreciate in value to cover the cost of the cleanup. At Pilgrim, Holtec has said the potential radiation dose from the Cape Cod release would be far less than the average traveler receives on a typical cross-country flight.

    In the Southwest, Holtec has ignited a different controversy. As the company acquires old plants, it is proposing to ship the highly radioactive spent fuel to New Mexico, where it plans to build a storage facility. Gov. Michelle Lujan Grisham (D) has vowed to fight the plan, telling Trump in a 2020 letter that storing radioactive material in the oil-rich Permian Basin region would be “economic malpractice.”

    Holtec says it is working in partnership with a group of local officials who believe the benefits of the facility — including new jobs and investment — outweigh the risks. On its website, Holtec says the facility will provide “a safe, secure, temporary, retrievable, and centralized facility for storage of used nuclear fuel and high-level radioactive waste until such time that a permanent solution is available.”

    The growing debate marks the latest twist in the tortured saga of nuclear power, which once was hailed as a miracle technology capable of producing large quantities of clean, affordable energy. In the early 1970s, the federal Atomic Energy Commission estimated that about 1,000 reactors would be built in the United States, and that nuclear sources eventually would provide at least half of the world’s power.

    But those ambitions soon collided with fears about nuclear radiation, especially after disastrous meltdowns at Chernobyl in Ukraine and Fukushima in Japan. Nuclear energy peaked at around 18 percent of global electricity production in the 1990s and now comprises about 10 percent, according to the U.S. Energy Information Association.

    Reactors in the United States initially were licensed for 40 years, and most were renewed for another 20 years. Of 94 reactors that are still active, licenses at over half are set to expire in the next two decades, according to Julia Moriarty, a senior vice president at Callan.

    Recently, worries about climate change have led some governments to embrace nuclear as a low-carbon source of power. Biden has called nuclear essential to the nation’s climate goals, and Washington last year set aside $6 billion for extending the licenses of some plants and $2.5 billion for developing new nuclear technologies.

    But the nation continues to puzzle over the problem of nuclear waste. This material, which emanates invisible but harmful radiation for hundreds of years, is stored in protective containers on the grounds of nuclear plants, scattered in dozens of towns across the country. A plan to build a national waste repository in Nevada’s Yucca Mountain stalled amid decades of political gridlock, leaving these towns saddled indefinitely with the threat of an accidental release or terrorist attack.

    Holtec is approaching those communities with an offer to clean up the mess.

    Nuclear Regulatory Commission - News Release
    No: 23-033 June 14, 2023
    CONTACT: David McIntyre, 301-415-8200
     
    NRC Identifies Nine Abnormal Occurrences in FY 2022 Annual Report to Congress
     
    The Nuclear Regulatory Commission has published its annual report to Congress for fiscal year 2022 on abnormal occurrences involving medical and industrial uses of radioactive material.
     
    Nine abnormal occurrences were identified, seven of which were medical events, such as misadministration of radioactive material during diagnostic procedures or the treatment of an illness. The other two events were non-medical overexposures. No events at commercial nuclear power plants in FY 2022 met the criteria for an abnormal occurrence.
     
    An abnormal occurrence is defined as an unscheduled incident or event that the NRC determines to be significant from the standpoint of public health or safety. The FY 2022 report did not identify any event that met the guidelines for inclusion as “other events of interest.” The report includes an update to an FY 2021 abnormal occurrence at the National Institute of Standards and Technology Center for Neutron Research.
     
    The “Report to Congress on Abnormal Occurrences, FY 2022” is available on the NRC website.
     
    From home energy retrofits and rooftop solar to wind energy and battery storage, we have more and better ways than ever before to transform our energy systems away from fossil fuels.
    By  Ben Jealous | Jun 13, 2023, 7:52am GMT+8
    This June 2, 2016 file photo shows Exelon Corporation’s Clinton Power Station through a tangle of high-voltage power lines in Clinton, Ill.

    This June 2, 2016 file photo shows Exelon Corporation’s Clinton Power Station through a tangle of high-voltage power lines in Clinton, Illinois. 

    AP Photos

    A growing chorus in Washington equates weaning our country off energy from killer fossil fuels to relying more heavily on new nuclear power plants. The same debates are happening in state capitals from Richmond to Raleigh, Springfield to Sacramento.

    This chorus distracts from the real work ahead of ensuring clean, renewable, affordable energy for every community.

    The risk of nuclear energy is an easy dividing line. To opponents, names like Three Mile Island, Chernobyl and Fukushima are all the evidence we need that a catastrophic event is unavoidable and unacceptable. For supporters, those events are a sign that disasters are few. Both are right: They happen infrequently, and when they do occur, they are cataclysmic.

    The more compelling reasons we should drop the silver bullet thinking about nuclear power are its cost and its reliability.

    Since the mid-20th century when nuclear power entered the public imagination, the belief has been that energy is “free” — start the chain reaction, make electricity. But it’s not free, and it never has been; uranium must be mined, and reactor fuel is consumable. We’ve reached a point where renewable sources like wind and solar power are cheaper, in part because they are quicker to come online.

    Nuclear power: more costly, vulnerable to climate change

    Lazard, a global investment bank and financial consultancy that reports annually on the “levelized cost of energy” from various sources, found that nuclear power is two to six times more costly per megawatt hour than wind and solar, which now cost the same per megawatt hour. The capital cost of large-scale solar and wind is at least eight times lower.

    The time to get new wind and solar into the electricity grid is at least half the time for a new nuclear plant; history shows anyone who estimates the completion date for a new nuclear plant is wrong.

    Unlike most industries that rely heavily on science and technology, the cost of building nuclear plants is rising over time. In Silicon Valley, they call it a reverse learning curve.

    Supporters of nuclear power like to argue that nuclear plants are required for reliability, and that they can operate all the time.

    This ignores nuclear’s vulnerability to climate change: severe weather, extreme temperatures, and both floods and droughts have forced nuclear plants to shut down unexpectedly in recent years.

    Additionally, a reactor goes offline for routine maintenance at least every two years, which means a plant must have more total capacity to cover that maintenance routine.

    By comparison, wind and solar farms have much fewer operational problems. And battery backups have gotten faster than the gas power generation that nuclear plants often turn to meet peak demand.

    It’s time to confront nuclear’s challenges — uranium mining, accident risk, cost and climate vulnerability — and double down on the solutions we know will be central to our shift away from fossil fuels.

    We can’t afford the distraction of a fiction around nuclear power when burning fossil fuels threatens the health of millions around the world annually. Our focus must be on bringing the clean air, cost savings and economic benefits of clean energy to communities across the country as quickly as we can.

    From home energy retrofits and rooftop solar to wind energy and battery storage, we have more and better ways than ever before to transform our energy systems from fossil fuels to energy that’s actually clean, reliable and renewable.

    Ben Jealous is executive director of the Sierra Club and a professor at the University of Pennsylvania.

    Tue, Jun 6, 2023, 4:02AM Radwaste Solutions
     

    Hanford’s Waste Treatment and Immobilization Plant. (Photo: DOE)

    A pair of recent reports by the U.S. Government Accountability Office and the National Academies of Science, Engineering, and Medicine highlight some of the challenges the Department of Energy faces in treating the millions of gallons of legacy radioactive waste at the Hanford Site in Washington state.

    Both reports focus on recent efforts by the DOE to assess possible alternatives to vitrifying Hanford’s 54 million gallons of liquid tank waste, immobilizing it in a solid glass form. The DOE has long intended to vitrify all the tank waste after separating it into high- and low-level radioactive waste streams. That plan, however, may not be feasible, as the DOE continues to face technical problems, cost overruns, and schedule delays with building the site’s Waste Treatment and Immobilization Plant (WTP).

    The issues: According to the GAO, construction of the WTP’s Pretreatment Facility, which would separate the waste streams, and High-Level Waste Facility, which would vitrify the HLW, cannot be completed as planned due to technical issues. Completing the facilities as planned, the GAO said, would be cost and schedule prohibitive.

    Likewise, the WTP’s Low-Activity Waste Facility, which is currently being commissioned, does not have the capacity to vitrify all of Hanford’s LLW, and the DOE is seeking alternatives for treating the remaining waste, referred to as supplemental low-activity waste (SLAW). The DOE is currently reviewing the possibility of solidifying Hanford’s SLAW in grout and disposing of it on site, at an outside facility, or a combination of both.

    The DOE is also negotiating with the Washington State Department of Ecology and the Environmental Protection Agency on revising court-mandated deadlines for treating Hanford’s tank waste.

    High-level waste: The GAO report, Hanford Cleanup: DOE Should Validate its Analysis of High-Level Waste Treatment Alternatives, assesses the DOE’s consideration of 24 options for treating Hanford’s HLW. Those options were outlined in an analysis of alternatives report released by the DOE in January. The analysis also found that the life-cycle cost estimates for treating the HLW ranged from $135 billion to $5 trillion.

    While the DOE plans to select an alternative for HLW treatment in the near future, the GAO found that the DOE has not committed to validating its analysis of alternatives. “Given the enormous cost and schedule implications of the decision, it is essential for DOE to take steps now to provide assurance that all viable alternatives for optimizing the tank waste treatment mission are considered,” the GAO said in its report.

    The DOE agreed with the GAO’s recommendation to obtain an independent review of the department’s analysis of HLW treatment alternatives, adding that actions the department has and will take satisfy the recommendation. The GAO, however, said it believes further action is needed.

    Low-level waste: The NASEM report, Review of the Continued Analysis of Supplemental Treatment Approaches of Low-Activity Waste at the Hanford Nuclear Reservation, which is still in prepublication as of this writing, is the third and final report on the organization’s review of an analysis of options for treating Hanford’s SLAW. As directed by law, that analysis was conducted by a federally funded research and development center (FFRDC) led by Savannah River National Laboratory.

    The FFRDC selected four alternative approaches to treating the SLAW, with a baseline alternative of vitrification with disposal at Hanford’s on-site disposal facility. The three other alternatives include solidification through steam reforming (similar to that of Idaho’s Integrated Waste Treatment Unit) with on-site disposal, off-site grouting and disposal, and a phased approach that begins with off-site grouting and disposal and transitions to on-site operations.

    According to the NASEM, the FFRDC has made a strong technical case that off-site grouting and disposal is for the most part the preferred option, and may be a technically valid option with on-site disposal if found acceptable from a waste acceptance standpoint.

    The NASEM also found that “a clear and persistent difference exists” between grouting and vitrification and steam reforming, and that grouting “dominates the other two alternatives on the basis of lower cost and shorter time to operational startup”.

    Before reaching a decision on specific alternatives, the NASEM said that a detailed analysis will still be needed for a wider variety of grouting options. This includes the location of grouting plants, the possibility of on-site commercial SLAW facilities, and a detailed assessment of the waste acceptance criteria, cost, and other aspects of off-site treatment or disposal, including regulatory and public acceptance.

    Krall LM, Macfarlane AM, and Ewing RC, Nuclear waste from small modular reactors, Proceedings of the National Academy of Sciences (PNAS); (2022); 119 (23): e2111833119. https://pubmed.ncbi.nlm.nih.gov/35639689/. https://www.pnas.org/doi/10.1073/pnas.2111833119

    [A study published in the Proceedings of the National Academy of Sciences (PNAS) in May 2022 indicates that small modular reactors (SMRs) – nuclear reactors designed to produce <300 megawatts (MW) of electricity – are likely to exacerbate the challenges of nuclear waste management and disposal. (Krall et al, 2022) The study, coauthored by Lindsay M. Krall and Rodney  C. Ewing of the Center for International Security and Cooperation at Stanford University and Allison M. Macfarlane, of the School of Public Policy and Global Affairs at University of British Columbia Vancouver, a former Chair of the US Nuclear Regulatory Commission (NRC).
     
    Developers, vendors and others touting SMRs and other “advanced” reactors claim that they will create less spent nuclear fuel (SNF) or high-level waste (HLW) than traditional 1,000 MW pressurized water reactors (PWRs), the prevalent type of reactor in commercial operation today. However the promoters “often employ simple metrics, such as mass or total radiotoxicity” to support their claims. 

    About 30 of the 70 SMR designs listed in the International Atomic Energy Agency (IAEA) Advanced Reactors Information System are characterized as “‘advanced’” reactors, which would use non-water coolants (e.g., helium, liquid metal, or molten salt). 

    For this study, Krall et al estimated the amount and characterized the nature of the nuclear waste from 3 distinct proposed SMR designs championed as advanced under development by NuScale, Terrestrial Energy, and Toshiba.  The designs, respectively, involve proposed water-cooled, molten salt–cooled, and sodium-cooled SMRs.  Krall et al analyzed the energy-equivalent volume, radio-chemistry, decay heat, and fissile isotope composition of spent fuel, high-level waste (HLW), and low- and intermediate-level (LILW) low-level waste streams. Their calculations indicate the SMRs are likely to “produce more voluminous and chemically/physically reactive waste” than traditional light water reactors. 
     
    Specifically the research group’s calculations indicate SMRs may generate 2 to 30 times more radioactive waste in need of management and disposal than conventional reactors per unit energy extracted. 
     
    Although the Krall analysis focuses on only 3 of dozens of proposed SMR designs, it advances that intrinsically higher levels of neutron leakage (causing activation of reactor materials) associated with SMRs suggests that most designs are inferior to traditional commercial reactors with respect to the generation, management, and final disposal of nuclear waste.
     
    “This increase of volume and chemical complexity will be an additional burden on waste storage, packaging, and geologic disposal. Also, SMRs offer no apparent benefit in the development of a safety case for a well-functioning geological repository.”
     
    The finding of additional waste volume is attributed to the use of neutron reflectors and/or of chemically reactive fuels and coolants in SMR designs. 

    Moreover, the volume of waste and energy-equivalent volume of waste are not the only important evaluation metrics.  “Nuclear reactors generate several distinct waste streams, which contain variable concentrations of radionuclides that have a range of half-lives from hours to millions of years and a variety of very different nuclear and chemical properties.” The radionuclide composition and speciation are “important parameters” for consideration of nuclear waste disposal in a geologic repository. 

    In the analysis, Krall et al note that management and disposal of SNF or HLW must take into account metrics beyond mass, volume, or radioactivity and consider: “ • the chemistry of the SNF matrix and its radionuclide contents, which influences the environmental mobility of radionuclides and their consequent potential to deliver radiation doses to humans in the biosphere;  •  the heat generated by radioactive decay, which can damage the SNF matrix, as well as other components of the barrier system (e.g., the stability of backfill clays used to inhibit radionuclide transport);  and • the concentrations of fissile isotopes in the SNF, which influence its potential to sustain a heat-generating critical chain reaction that can damage the fuel and barrier systems in a geologic repository .” 
     
    “These variables depend on the SNF radiochemical composition (i.e., the radionuclide amount and type, including their chemical properties, half-lives, decay modes, and daughter products), which in turn, depends on the initial fuel composition, its final burnup, and the time elapsed since it was discharged from the reactor. In addition, the in-core neutron energy spectrum affects the types and amounts of radionuclides formed in the fuel and reactor materials, such that the composition of SNF generated by a moderated thermal-spectrum reactor will differ from that generated by a fast reactor.”
     
    The specifics of waste chemistry is also relevant for determination of how any particular nuclear material may be stored. Proposed SMRs “employ chemically exotic fuels and coolants (e.g., metallic sodium, metallic uranium, and uranium tetrafluoride) that react rapidly with water and/or atmospheric oxygen.” Experience with the handling and disposing of these chemically unstable waste streams is limited. 
     
    Krall et al add that exotic spent fuel, coolant, and/or moderator materials will require treatment and conditioning prior to disposal, but, as the properties of the by-products and infrastructure associated with such processes are uncertain, the additional waste streams generated by treatment and conditioning processes are not addressed in this study.
     
    Krall et al conclude: 

    “This analysis of three distinct SMR designs shows that, relative to a gigawatt-scale PWR, these reactors will increase the energy-equivalent volumes of SNF, long-lived LILW, and short-lived LILW by factors of up to 5.5, 30, and 35, respectively. These findings stand in contrast to the waste reduction benefits that advocates have claimed for advanced nuclear technologies. More importantly, SMR waste streams will bear significant (radio-)chemical differences from those of existing reactors. Molten salt– and sodium-cooled SMRs will use highly corrosive and pyrophoric fuels and coolants that, following irradiation, will become highly radioactive. Relatively high concentrations of 239Pu and 235U in low–burnup SMR SNF will render recriticality a significant risk for these chemically unstable waste streams.”

    “SMR waste streams that are susceptible to exothermic chemical reactions or nuclear criticality when in contact with water or other repository materials are unsuitable for direct geologic disposal. Hence, the large volumes of reactive SMR waste will need to be treated, conditioned, and appropriately packaged prior to geological disposal. These processes will introduce significant costs—and likely, radiation exposure and fissile material proliferation pathways—to the back end of the nuclear fuel cycle and entail no apparent benefit for long-term safety.

    Although we have analyzed only three of the dozens of proposed SMR designs, these findings are driven by the basic physical reality that, relative to a larger reactor with a similar design and fuel cycle, neutron leakage will be enhanced in the SMR core. Therefore, most SMR designs entail a significant net disadvantage for nuclear waste disposal activities. Given that SMRs are incompatible with existing nuclear waste disposal technologies and concepts, future studies should address whether safe interim storage of reactive SMR waste streams is credible in the context of a continued delay in the development of a geologic repository in the United States.”]

    Key Findings

    NuScale and the Utah Associated Municipal Power Systems (UAMPS) announced costs of a 462-megawatt small modular reactor (SMR) have risen dramatically.

    As recently as mid-2021, the target price for power was pegged at $58 per megawatt-hour (MWh); it’s risen to $89/MWh, a 53% increase.

    The price would be much higher without $4 billion federal tax subsidies that include a $1.4 billion U.S. Department of Energy contribution and a $30/MWh break from the Inflation Reduction Act.

    The higher target price is due to a 75% increase in the estimated construction cost for the project, from $5.3 to $9.3 billion dollars.

    Last week, NuScale and the Utah Associated Municipal Power Systems (UAMPS) announced what many have long expected. The construction cost and target price estimates for the 462-megawatt (MW) small modular reactor (SMR) are going up, way up.

    From 2016 to 2020, they said the target power price was $55/megawatt-hour (MWh). Then, the price was raised to $58/MWh when the project was downsized from 12 reactor modules to just six (924MW to 462MW). Now, after preparing a new and much more detailed cost estimate,  the target price for the power from the proposed SMR has soared to $89/MWh.

    UAMPS NuScale SMR Target Price of Power

    Remarkably, the new $89/MWh price of power would be much higher if it were not for more than $4 billion in subsidies NuScale and UAMPS expect to get from U.S. taxpayers through a $1.4 billion contribution from the Department of Energy and the estimated $30/MWh subsidy in the Inflation Reduction Act (IRA). 
     
    It also is important to remember that the $89/MWh target price is in 2022 dollars and substantially understates what utilities and their ratepayers actually will pay if the SMR is completed. For example, assuming a modest 2% inflation rate through 2030, utilities and ratepayers would pay $102 for each MWh of power from the SMR—not the $89 NuScale and UAMPS want them to believe they will pay.
     
    The 53% increase in the SMR’s target power price since 2021 has been driven by a dramatic 75% jump in the project’s estimated construction cost, which has risen from $5.3 billion to $9.3 billion. The new estimate makes the NuScale SMR about as expensive on a dollars-per-kilowatt basis ($20,139/kW) as the two-reactor Vogtle nuclear project currently being built in Georgia, undercutting the claim that SMRs will be cheap to build.
     
    NuScale and UAMPS attribute the construction cost increase to inflationary pressure on the energy supply chain, particularly increases in the prices of the commodities that will be used in nuclear power plant construction.
     
    For example, UAMPS says increases in the producer price index in the past two years have raised the cost of:
    • Fabricated steel plate by 54%  
    • Carbon steel piping by 106%  
    • Electrical equipment by 25%  
    • Fabricated structural steel by 70%  
    • Copper wire and cable by 32%
    In addition, UAMPS notes that the interest rate used for the project’s cost modeling has increased approximately 200 basis points since July 2020. The higher interest rate increases the cost of financing the project, raising its total construction cost.
     
    Assuming the commodity price increases cited by NuScale and UAMPS are accurate, the prices of building all the SMRs that NuScale is marketing—and, indeed, of all of the SMR designs currently being marketed by any company—will be much higher than has been acknowledged, and the prices of the power produced by those SMRs will be much more expensive.
     
    Finally, as we’ve previously said, no one should fool themselves into believing this will be the last cost increase for the NuScale/UAMPS SMR. The project still needs to go through additional design, licensing by the U.S. Nuclear Regulatory Commission, construction and pre-operational testing. The experience of other reactors has repeatedly shown that further significant cost increases and substantial schedule delays should be anticipated at any stages of project development.
     
    The higher costs announced last week make it even more imperative that UAMPS and the utilities and communities participating in the project issue requests for proposal (RFP) to learn if there are other resources that can provide the same power, energy and reliability as the SMR but at lower cost and lower financial risk. History shows that this won’t be the last cost increase for the SMR project.
     
    David Schlissel (dschlissel@ieefa.org) is IEEFA director of resource planning analysis

    Pages